IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-25, NO. 12, DECEMBER 1977

1037

The Design of a Class of Microwave Filters
Using Lumped and Distributed Elements

M. 1. SOBHY, MEMBER, IEEE, AND MOOTAMAN SAFI

Abstract—The design and performance of ladder networks con-
taining both lumped and distributed elements are described. The
necessary and sufficient conditions on the coefficients of the charac-
teristic polynomial have been obtained and a suitable low-pass to
band-pass transformation has been developed. The design procedure
was then applied to the design of microwave filters and the measured
performances show good agreement with the theoretical predictions.

I. INTRODUCTION

ENERAL networks containing lumped and dis-

tributed elements have been dealt with by numerous
authors [1]-[3]. However, most of their results deal with the
theoretical aspects of the problem. The work described in
this paper has concentrated on ladder networks and the
main aim is to obtain a design procedure to realize practical
circuits. The procedure has been applied to various
examples with successful results.

The advantage of these circuits over circuits containing
distributed elements only is that the response in the har-
monic frequency bands can be greatly reduced and the
advantage over circuits containing lumped elernents only is
that a greater rate of cutoff can be achieved for the same
order because of the presence of finite transmission zeros.

II. THEORETICAL ANALYSIS

A two-variable prototype ladder network is shown in Fig.
1. The impedances of all the series elements are proportional
to the frequency variable s = ¢ + jw, and the admittances of
all the shunt elements are proportional to another frequency
variable 4 = Y + jQ. The variables s and A are related by
A= f(s) and, in general, f(s) can take various forms. In a
prototype lumped/distributed network all the series ele-
ments are inductors and all the shunt elements are open-
circuited lengths of commensurate transmission lines. In this
case f (s) = tanh T,s where T, is the delay on each line.

The input impedance of the network in Fig. 1(a) is given
by
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Fig. 1. Lumped/distributed ladder networks.

for n even. Similar forms can be obtained for the input
impedance of the network in Fig. 1(b).

Without loss of generality, the constants ¢, and d, can be
normalized to

Cop = Rz and do = 1. (3)

Conditions must exist on the constants ¢ and d in order
that the impedance function can be expanded in the con-
tinued fraction form

1

1 1 1
Zin(sA) =045+ 57— s + R,

— 4
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with positive coefficients.

The necessary and sufficient conditions that the required
continued fraction form exists are given by

cldl = Cod2 + Czdo

C1d3+C3d1 =Cod4‘+’C2d2+C4d()

C,,d,,_z = cn—ldn—l‘ (5)

Conditions (5) together with (3) form »n + 1 conditions on
the 2n + 1 coefficients ¢ and d. Thus n coefficients could be
chosen and the remaining n + 1 coefficients are then deter-
mined. In other words, there are n conditions that can be
imposed on the response of the network as in the case of a
lumped ladder network.
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The input scattering parameter S,(s,A) can be obtained
from
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The network is symmetrical and the small differences in the
values of the symmetrical elements is due to the errorsin the

Z.—R

S1i(s.4) = Z—J:R_l (6)
in 1
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for n odd, and a similar expression can be obtained for n
even.

All the odd terms except the last are split into two terms
and the total number of either the a or the b constants is
(3n + 1)/2 for n odd and (3n + 2)/2 for n even.

The transfer scattering parameter S,,(s,4) is given by

2/R,R,

calculations. All the shunt elements C,, C,and C s represent
distributed capacitors and all the series elements L, and L,
represent lumped inductors. The resulting response for the
prototype network obtained is shown in Fig. 2.

SZI(S’)') =

The relations between the b constants in (8) and the cand d
constants in (1) are given by

b, =c¢; +d;, for i even
bi=di| for i odd. 9)
bi = ci

The b constants in the characteristic polynomial must satisfy
the conditions in (9) and the ¢ and d constants in turn must
satisfy the conditions in (5).

II1. THE NETWORK RESPONSE

When the relation between s and 4 is known, the first step
in the design procedure is to determine the b constants of (8)
such that the desired response is obtained (n constraints)
and at the same time conditions (3), (5), and (9) are satisfied
[(» + 1)/2 constraints for n odd and (r/2) + 1 for n even].

As an example, an error minimization procedure was used
to determine the b constants for a fifth-order equiripple
response with cutoff at «» = 1rad/s,and a passband ripple of
1 dB. The normalized commensurate delay T, was n/4 and in
this case A = tanh (n/4)s. The 5 conditions on the passband
are given by

a) The response at the first and second minima = 0dB (2
conditions).

b) The response at the first and second maxima = 1dB (2
conditions).

c) The response at cutoff (w = 1) =1 dB (1 condition).

When the sum of the squares of the errors is less than
1078, the resulting b constants for equalnormalized termin-
ations are given by

by =2, by = 8.09752, b, = 1.96973,

b, = 15.9499, by = 26.58673,  b; =3.30052,

by = 1549523, bs = 18.18617.
The above constants relate to (8) when s and 1 are
interchanged.

When the continued fraction expansion is obtained, the
circuit elements are given by
C, = 2359947, L, = 0.984665,

L, = 0.985067, Cs = 2.334839.

C; = 3402732,

bo + bys + by A+ bysA + bysA? + bys?h + -+ b, st 2 0 Diz”
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When the b constants are known, a two-dimensional
frequency plot can be drawn which will give the response for
any relation between s and A. The plot for the above example
is shown in Fig. 3 and the response for any relation between s
and A can be found by plotting that relation and finding the
intersection with the constant insertion loss contours.
Examples of A=s, A=tanhs, and A= tanh (n/4)s are
shown in Fig. 3.

IV. FREQUENCY TRANSFORMATION

After the low-pass prototype network is obtained, a
frequency transformation step is required such that the
relation

H,(0,,Q,) = H(w,Q) (10)
is satisfied, where the subscript n refers to the normalized
quantities.

For the lumped/distributed case we also have
Q,=tan T,w, and Q= tan Tw. (11)

To obtain the required transformation, the relations be-
tween the normalized and denormalized frequencies are

w, = fi(w) and Q,=f,(Q) (12)

Furthermore, if the resulting network is to be realizable
both fi(w) and f,(Q) must be positive-real functions.
From (11) and (12) we have

0 = tan [T(7)] = an | 1,7, (Fran~" @) .13

Thus in order that (10) is satisfied, the functions f; and f,
are related by (13). It is not always possible to obtain
positive-real functions f; and f, such that (13)is satisfied and
(10) is satisfied for all values of w.

A. Frequency Scaling

Scaling the frequency by a factor n can be easily achieved
by the relations

w = nfw,,

(14)

A =tan (n; T,w) = tan Tw.
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Fig. 2. Frequency response of fifth-order Chebyshev filter.
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Fig.3. Constant insertion-loss contours for third-order Chebyshev filter.

All the values of the series inductors are divided by n ,and
the commensurate delay T of the scaled network is n, T,.

In this case, both (10) and (13) are satisfied and the
transformation is valid for all values of w.

B. Low-Pass to Bandpass Transformation

In this case it is not possible to find two positive-real
functions f; and f, to satisfy the above conditions. The
alternative is to satisfy (10) at a number of discrete frequen-
cies. This could be achieved by choosing

Fi(ew) = Pre@o (2 _ 9_0)

(J)Z - wl CUO w
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Fig. 4. Low-pass to bandpass transformations.
and
f (Q) — anQO Q QO (15)
> = Me?O0 7 2
QZ - Ql Qo Q

where ,, is the normalized cutoff frequency, w§ = @, ®,,
w; and w, are the cutoff frequencies of the bandpass
response, Q,. = tan T,0,, Q;=tan Tw,;, Q,=tan Tw,,
and Q3 = Q, Q, = (tan Tw,)>

The condition Q3 = Q, Q, will determine the required
value of T, the commensurate delay of the bandpass
network. This is obtained by solving the equation

tan Tow, tan Tw, = tan? To,. (16)

There are several solutions to (16). Each solution will give
a set of transformed impedance values and the final choice of
T will be such that the most practical impedance values are
obtained.

The resulting impedance transformations of the circuit
elements are shown in Fig. 4.

The above transformation ensures that (10) is satisfied
only at (w, = 0,0 = w), (W, = Ve ® = ©;),and (0, = ©,
® = w,).

The normalized cutoff frequency w,, can be chosen as
either the 3-dB cutoff frequency, or the transmission zero
frequency, or any other convenient value.

V. PrAcCTICAL EXAMPLES

Example I: A lumped/distributed third-order, maximally
flat, ladder filter is designed to meet the following
specifications:

R, = R, =50 Q and the 3-dB cutoff frequencies are at
2.823 GHz and 3.183 GHz (f, = 3 GHz).

The b constants were determined for T,,= 1 and the
elements of the low-pass prototype were then calculated,

Equation (16) was then solved for T and the value of T for

the most practical values of the circuit elements was found to
be 0.20485 ns.
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Fig. 6. (a) Theoretical response and measured points of the designed filter. (b) Expanded theoretical passband of designed
filter and measured points.
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Fig. 7. Final circuit of fifth-order filter (Example IT).

Fig. 5 shows the final bandpass circuit and a photograph
of the actual filter constructed in microstrip form.

Fig. 6 shows the theoretical response of the filter and the
measured points.

Example I1: A fifth-order low-pass equiripple filter was
designed with 0.5-dB passband ripple and a cutoff frequency
of 3 GHz

First the b constants were determined for the normalized
prototype with T, = 1.2 to satisfy the equiripple criteria. The
circuit elements were then calculated for the required filter.

Fig. 7 shows the final circuit. The theoretical response and
measured points are shown in Fig. &.

VI. CONCLUSIONS

A successful design procedure has been developed for the
design of lumped/distributed ladder networks. These
networks have useful applications in the lower microwave
range where the lumped elements can have reasonable
performance. More accurate design procedure for lumped
elements will be required if high-order filters of this type are
to be designed.

As mentioned Dbefore, the advantage of a
lumped/distributed filter over a purely distributed one is
that attenuation can be obtained in the harmonic frequency
bands. The advantage over a purely lumped filter is the
higher rate of cutoff due to the finite transmission zeros.

The main disadvantage of the lumped/distributed circuit
is the practical difficulties encountered in designing and
producing the lumped clements at microwave frequencies.
Various empirical formulae exist [4]-[6] for the design of
these elements but none are accurate enough for the accur-
ate prediction of their performance. Furthermore, lumped
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Fig. 8. Theoretical response and measured points of fifth-order Cheby-
shev filter (Example II).

elements produce higher losses than distributed ones. The
lumped elements are believed to be responsible for the
insertion loss at the center frequency of the filter and for
the slight shift in the cutoff frequencies. The measured
attenuations in the harmonic bands are generally lower than
the theoretical values; this is thought to be due to
the coupling between the elements which exists in microstrip
circuits.
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