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The Design of a Class of Microwave Filters
Using Lumped and Distributed Elements

M. I. SOBHY, MEMBER, IEEE, AND MOOTAMAN SAFI

Abstract—The design and performance of ladder metworks con-

taining both lumped and distributed elements are described. The
necessary and sufficient conditions on the coefficients of the charac-

teristic polynomial have been obtained and a suitablle low-pass to
band-pass transformation has been developed. The design procedure
was then applied to the design of microwave filters and the measured
performances show good agreement with the theoretical predictions.

I. INTRODUCTION

GENERAL networks containing lumped and dis-

tributed elements have been dealt with by numerous

authors [1]–[3]. However, most of their results cleal with the

theoretical aspects of the problem. The work (described in

this paper has concentrated on ladder networks and the

main aim is to obtain a design procedure to realize practical

circuits. The procedure has been applied to various

examples with successful results.

The advantage of these circuits over circuits containing

distributed elements only is that the response in the har-

monic frequency bands can be greatly reduced and the

advantage over circuits containing lumped elements only is

that a greater rate of cutoff can be achieved for the same

order because of the presence of finite transmission zeros.

II. THEORETICAL ANALYSIS

A two-variable prototype ladder network is shown in Fig.

L The impedances of all the series elements are proportional

to the frequency variables = a + jco, and the admittances of

all the shunt elements are proportional to another frequency

variable A = ~ + jfl. The variables s and 1 are related by

2 = ~(s) and, in general, ~(s) can take various forms. In a

prototype lumped/distributed network all the series ele-

ments are inductors and all the shunt elements are open-

circuited lengths of commensurate transmission lines. In this

case ~(s) = tanh T.s where T. is the delay on each line.

The input impedance of the network in Fig. 1(a) is given

by

Zi~(S,A)

co + c~s + C2SI + C3S2A+ ““” c.s@+l)’2A(n-1)’2

= do +dll +d2As +d3A2s + .“. dn-l~(”- l)’zs(n-i)’z

(1)

for n odd, and
co + c~s + C2SA + C3S2A + “ “ “ cnsn’21”2

Zin(s~2) = dO + dl ~ + dzas + ds ~2s + . . . dn_1p2f/z-l

(2)
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Fig. 1. Lumped/distributed ladder networks.

for n even. Similar forms can be obtained for the input

impedance of the network in Fig. 1(b).

Without loss of generality, the constants co and do can be

normalized to

co = R2 and do = 1. (3)

Conditions must exist on the constants c and din order

that the impedance function can be expanded in the con-

tinued fraction form

with positive coefficients.

The necessary and sufficient conditions that the required

continued fraction form exists are given by

cldl —— Co d2 + C2do

cld~ + c3d1 —— cod~ + c2d2 + c4do

c&2 = c“_ld._l. (5)

Conditions (5) together with (3) form n + 1 conditions on

the 2n + 1 coefficients c and d. Thus n coefficients could be
chosen and the remaining n + 1 coefficients are then deter-

mined. In other words, there are n conditions that can be

imposed on the response of the network as in the case of a

lumped ladder network.
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The input scattering parameter SI ~(s,1) can be obtained The network is symmetrical and the small differences in the

from values of the symmetrical elements is due to the errors in the

S1,(S,2) =
Zin_Rl

Zi~ + RI
(6)

a. + ujs + ala + U2SA + ajs12 + a3s2~ + ““. a.s(n+i)’2~(”–1)’2

= b. + b’l S + bl~ + b2s2 + &S~2 + bsszl + ‘“” bns(n+l)’21(n-1)’2
(7)

for n odd, and a similar expression can be obtained for n

even. calculations. All the shunt elements C ~,Cs, and Cs represent

All the odd terms except the last are split into two terms distributed capacitors and all the series elements L2 and L4

and the total number of either the a or the b constants is represent lumped inductors. The resulting response for the

(3n + 1)/2 for n odd and (3n + 2)/2 for n even. prototype network obtained is shown in Fig. 2.

The transfer scattering parameter S2 ~(s,l) is given by

2J~
(8)‘21(S?A) = b. + &ls + bl~ + b2s~ + &3s22 + b&~ + . . . b#n+l)/z~(.-l)lz”

The relations between the b constants in (8) and the c and d

constants in (1) are given by

bi = ci + di, for i even

~=di

I

for i odd. (9)

bi=ci ‘

The b constants in the characteristic polynomial must satisfy

the conditions in (9) and the c and d constants in turn must

satisfy the conditions in (5).

III. THE NETWORK RESPONSE

When the relation betweens and 1 is known, the first step

in the design procedure is to determine the b constants of (8)

such that the desired response is obtained (n constraints)

and at the same time conditions (3), (5), and (9) are satisfied

[(n + 1)/2 constraints for n odd and (n/2)+ 1 for n even].

As an example, an error minimization procedure was used

to determine the b constants for a fifth-order equiripple

response with cutoff at co = 1 rad/s, and a passband ripple of

1 dB. The normalized commensurate delay T. was 7c/4and in

this case A = tanh (n/4)s. The 5 conditions on the passband

are given by

a) The response at the first and second minima= OdB (2

conditions).

b) The response at the first and second maxima= 1 dB (2

conditions).

c) The response at cutoff (co = 1) = 1 dB (1 condition).

When the sum of the squares of the errors is less than

10-8, the resulting b constants for equal normalized termin-

ations are given by

b. = 2, b’l = 8.09752,

b2 = 15.9499, b~ = 26.58673,

bh = 15.49523, b~ = 18.18617.

The above constants relate to (8)

interchanged.

bl = 1.96973,

b3 = 3.30052,

when s and J are

When the continued fraction expansion is obtained, the

circuit elements are given by

Cl = 2.359947, Lt = 0.984665, C3 = 3.402732,

L4 = 0.985067, C5 = 2.334839.

When the b constants are known, a two-dimensional
frequency plot can be drawn which will give the response for

any relation betweens and A The plot for the above example

is shown in Fig. 3 and the response for any relation betweens

and A can be found by plotting that relation and finding the

intersection with the constant insertion loss contours.

Examples of A = s, 2 = tanh s, and ~ = tanh (n/4)s are

shown in Fig. 3.

IV. FREQUENCY TRANSFORMATION

After the low-pass prototype network is obtained, a

frequency transformation step is required such that the

relation

~n(W,Qn) = ~(@Q) (lo)

is satisfied, where the subscript n refers to the normalized

quantities.

For the lumped/distributed case we also have

il. = tan T.co” and f2 = tan Tco. (11)

To obtain the required transformation, the relations be-

tween the normalized and denormalized frequencies are

co. =~l(co) and !2. =~2(f2). (12)

Furthermore, if the resulting network is to be realizable

both $1(o) and ~2(f2) must be positive-real functions.

From (11) and (12) we have

[ (1 -141(13f2(~) = tan [C(.fl(a))] = tan Z ~1 ~tan

Thus in order that (10) is satisfied, the functions~l and f2
are related by (13). It is not always possible to obtain

positive-real functions fl andf2 such that (13) is satisfied and

(10) is satisfied for all values of co.

A. Frequency Scaling

Scaling the frequency by a factor n ~can be easily achieved

by the relations

co = nfco.

J = tan (nf T.co) = tan Tco. (14)
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Fig. 2. Frequency response of fifth-order Chebyshev filter.

Fig. 3. Constant insertion-loss contours for third-order Chebyshev filter.

All the values of the series inductors are divided by n~ and

the commensurate delay T of the scaled network is nf z.

In this case, both (10) and (13) are satisfied and the

transformation is valid for all values of co.

B. Low-Pass to Bandpass Transformation

In this case it is not possible to find two positive-real

functions jl and ~z to satisfy the above conditions. The
alternative is to satisfy (10) at a number of discrete frequen-

cies. This could be achieved by choosing

L.P.

T
J.L.-..

z
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Fig. 4. Low-pass to bandpass transformations.

(15)

where COHCis the normalized cutoff frequency, co: = co1coz,

col and co2 are the cutoff frequencies of the bandpass

response, !& = tan T.m., Cll = tan TOI, f22 = tan TC02,

and Q: = fill 02 = (tan TCDO)2.

The condition fl~ = fll f22 will determine the required

value of T, the commensurate delay of the bandpass

network. This is obtained by solving the equation

tan To.)l tan Tco2 = tan2 TOO. (16)

There are several solutions to (16). Each solution will give

a set of transformed impedance values and the final choice of

T will be such that the most practical impedance values are

obtained.

The resulting impedance transformations of the circuit

elements are shown in Fig. 4.

The above transformation ensures that (10) is satisfied

)only at (con= O,OJ= COO),(o.r~= co~C,co = CO1, and (CO~= CO~~,

co = 02).

The normalized cutoff frequency co., can be chosen as

either the 3-dB cutoff frequency, or the transmission zero

frequency, or any other convenient value.

V. PRACTICAL EXAMPLES

Example I: A lumped/distributed third-order, maximally

flat, ladder filter is designed to meet the following

specifications:
RI = R2 = 50 !2 and the 3-dB cutoff frequencies are at

2.823 GHz and 3.183 GHz (~. = 3 GHz).

The b constants were determined for T.= 1 and the

elements of the low-pass prototype were then calculate~.

Equation (16) was then solved for T and the value of Tfor

the most practical values of the circuit elements was found to

be 0.20485 ns.



1040 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-25, NO. 12, DECEMBER 1977

Fig. 6.
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Fig. 5. Final battdpass circuit.
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(a) Theoretical response and measured points of the designed filter. (b) Expanded theoretical passband of designed
filter and measured points.
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Fig. 7. Final circuit of fifth-order filter (Example II).

Fig. 5 shows the final bandpass circuit and a photograph

of the actual filter constructed in microstrip form.

Fig. 6 shows the theoretical response of the filter and the

measured points.

Example II: A fifth-order low-pass equiripple filter was

designed with 0.5-dB passband ripple and a cut off frequency

of 3 GHz.

First the b constants were determined for the normalized

prototype with L = 1.2 to satisfy the equiripple criteria. The

circuit elements were then calculated for the required filter.

Fig. 7 shows the final circuit. The theoretical response and

measured points are shown in Fig. 8.

VI. CONCLUSIONS

A successful design procedure has been developed for the

design of lumped/distributed ladder networks. These

networks have useful applications in the lower microwave

range where the lumped elements can have reasonable

performance. More accurate design procedure for lumped

elements will be required if high-order filters of this t ype are

to be designed.

As mentioned before, the advantage of a

lumped/distributed filter over a purely distributed one is

that attenuation can be obtained in the harmonic frequency

bands. The advantage over a purely lumped filter is the
higher rate of cutoff due to the finite transmission zeros.

The main disadvantage of the lumped/distributed circuit

is the practical difficulties encountered in clesigning and

producing the lumped elements at microwave frequencies.

Various empirical formulae exist [4]-[6] for the design of

these elements but none are accurate enough for the accur-

ate prediction of their performance. Furthermore, lumped
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Fig. 8. Theoretical response and measured points of fifth-order Cheby-
shev filter (Example II).

elements produce higher losses than distributed ones. The

lumped elements are believed to be responsible for the

insertion loss at the center frequency of the filter and for

the slight shift in the cutoff frequencies. The measured

attenuations in the harmonic bands are generally lower than

the theoretical values; this is thought to be due to

the coupling between the elements which exists in microstrip

circuits.
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